• Our Services
    • Math Olympiad Courses
  • Books
  • Blog
  • Alumni
  • Contact Us
  • Login

Text:

info@42points.com
42 Points42 Points
  • Our Services
    • Math Olympiad Training
      • AMC 8 & MATHCOUNTS
      • Proof-Based Preparation – Part 1
      • Proof-Based Preparation – Part 2
      • AMC 10 & AMC 12
      • Junior Math Olympiad
      • Practice of Problem Solving
      • Senior Math Olympiad
  • Books
  • Blog
  • Alumni
  • Contact
  • Log in

How to Find the Derivative

August 30, 2021 Math Olympiads Topics, Math Topics
In order to find the derivative $f'(x)$ of a particular function $f(x)$ we need to know the following:
    • The derivatives of the basic functions (like $x^2$, $e^x$, $\cos{x}$, etc.)
    • The rules of differentiation for functions that have operations (addition, subtraction, multiplication, etc.)

Derivatives of the Basic Functions

The derivatives of the basic functions are given in the following table (here $c \in \mathbb{R}$, $a>0$, $a \neq 1$).

$f(x)$  $f'(x)$
$c$ 
$0$
$x$
 $1$
$x^2$
 $2x$
$x^3$
$3x^2$
$\frac{1}{x}$
$-\frac{1}{x^2}$
$\sqrt{x}$ 
$\frac{1}{2\sqrt{x}}$
$\sqrt[3]{x}$
$\frac{1}{3\sqrt[3]{x^2}}$
 $x^n$
$nx^{n-1}$

 


 

$\sin{x}$
$\cos{x}$
$\cos{x} $
$-\sin{x}$
$\tan{x}$
$\sec^2{x}$
$\cot{x}$
$-\csc^2{x}$
$\sec{x}$
$\sec{x}\tan{x}$
$\csc{x}$ 
$-\csc{x}\cot{x}$

 


 

$e^{x}$ 
$e^{x}$
$a^{x}$
$a^{x} \cdot \ln{a}$
$\ln{x}$
 $\frac{1}{x}$
$\log_{a}{x}$
$\frac{1}{x \cdot \ln{a}}$

 


 

$\sin^{-1}{x}$
$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1}{x}$
$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1}{x}$ 
$\frac{1}{1+x^2}$
$\cot^{-1}{x}$
$-\frac{1}{1+x^2}$
$\sec^{-1}{x}$
$\frac{1}{|x|\sqrt{1-x^2}}$
$\csc^{-1}{x}$
$-\frac{1}{|x|\sqrt{1-x^2}}$
 
 



Rules of Differentiation

For the functions that involve operations on other functions, there are six rules of differentiation: Coefficient Rule, Addition Rule, Subtraction Rule, Product Rule, Quotient Rule, and Chain Rule.

The Coefficient Rule states that for a constant $k \in \mathbb{R}$ and the function $f(x)$

$ \left( k \cdot f(x) \right)’= k \cdot f'(x) $

Example

$ \left( 3 \cdot \sin{x} \right)’ = 3 \cdot \left( \sin{x} \right)’ = \boxed{3\cos{x}} $

The Addition Rule states that for the functions $f(x)$ and $g(x)$

$ \left( f(x)+g(x) \right)’= f'(x) + g'(x) $

Example

$ \left( x^2 + e^{x} \right)’ = \left( x^2 \right)’ + \left( e^{x} \right)’ = \boxed{ 2x+e^x} $

The Subtraction Rule states that for the functions $f(x)$ and $g(x)$

$ \left( f(x)-g(x) \right)’= f'(x) – g'(x) $

Example

$ \left( x^3 – \ln{x} \right)’ = \left( x^3 \right)’ – \left( \ln{x} \right)’ = \boxed{ 3x^2- \frac{1}{x}} $

The Product Rule states that for the functions $f(x)$ and $g(x)$

$ \left( f(x) \cdot g(x) \right)’= f'(x) \cdot g(x) + g'(x) \cdot f(x) $

Check Out Our Math Olympiad Courses!

Learn more

Example

$ \left( x \cdot \tan{x} \right)’ = \left( x \right)’ \cdot \left( \tan{x} \right) + \left( \tan{x} \right)’ \cdot \left( x \right) = \left( 1 \right) \cdot \left( \tan{x} \right) + \left( \sec^2{x} \right) \cdot \left( x \right) = \boxed{ \tan{x} + x \sec^2{x}} $

The Quotient Rule states that for the functions $f(x)$ and $g(x)$

$ \left( \frac{f(x)}{g(x)} \right)’= \frac{f'(x) \cdot g(x) – g'(x) \cdot f(x)}{g^2(x)} $

Example

$ \left( \frac{2x-1}{x} \right)’ = \frac{(2x-1)’ \cdot (x) – (x)’ \cdot (2x-1) }{x^2} = \frac{(2) \cdot (x) – (1)\cdot (2x-1) }{x^2} = \boxed{ \frac{1}{x^2} } $
 

The Chain Rule states that for the functions $f(x)$ and $g(x)$

$ \left( f(g(x)) \right)’= f'(g(x)) \cdot g'(x) $

Example

$ \sin \left( x^2+3x \right)’= \cos \left(  x^2+3x \right) \cdot \left(  x^2+3x \right)’ = \boxed{ \left( 2x+3 \right) \cos \left(  x^2+3x \right) } $

Tags: Math Topics
Share
4

About 42 Points

42 Points is an Online Math Training Program and Tutoring Service. Learn more about our services at https://42points.com/

You also might be interested in

Mathematical Induction: Number Theory

Jun 15, 2021

Mathematical Induction is used to prove that the statement of[...]

Bezout’s Identity

Jun 15, 2021

Bezout’s Identity states that for any natural numbers $a$ and[...]

Monovariant

Jun 12, 2021

Monovariant is a quantity related to the object that is[...]

Join our newsletter

Post Archives

Post Categories

Most Liked Posts

  • Solutions to the Polish Mathematical Olympiad, 2021 By 42 Points on December 21, 2021 9
  • Monovariant By 42 Points on June 12, 2021 7
  • Puerto Rico Team Selection Test, 2021. Day 2 By 42 Points on September 14, 2021 7

Tag Cloud

Math Competitions Math Olympiads Math Topics OMPR OMPR 2022 Puerto Rico

Find us on

Ads

Cute Watercolor Bunny Throw Pillow
Adorable Watercolor Bunny Throw Pillow
by ULA Art Studio
Funny Realistic Corn Pattern Socks
Funny Corn Pattern Socks
by ULA Art Studio

42 Points

42 Points is an Online Math Olympiad Program and tutoring service.

Hablamos español, contáctenos para mayor información sobre nuestros cursos y servicios.

 

Contact Information

  • 42 Points
  • info@42points.com
  • 42points.com

Quick Links

  • Math Olympiad Courses
  • AP Calculus
  • Online Math Tutoring
  • Books
  • Blog
  • Alumni
  • Help Center

Fresh from 42Pedia blog

  • Puerto Rico Team Selection Test, 2023. Day 2
  • Puerto Rico Team Selection Test, 2023. Day 1
  • Team Selection Test for Centro and Ibero 2022

WE ACCEPT

PayPal Acceptance Mark

© 2025 — 42 Points.

  • Online Math Training & Tutoring Services
  • Disclaimer
  • Contact
  • Buy AMC 10 Preparation Book
Prev Next