Inequality of Arithmetic and Geometric Means (AM-GM) states that for all positive real numbers $x_1$, $x_2$, $x_3$ it holds that
$$ \frac{ x_1+x_2+x_3 }{3} \geq \sqrt[3]{ x_1x_2x_3 } $$
The equality holds if $x_1=x_2=x_3$.
Problem (Moscow City, 2008)
Let $x$, $y$, $z$ be positive real numbers, such that $xyz=1$. Show that
$$ (2+x)(2+y)(2+z) \geq 27 $$
Solution
Let us apply the AM-GM inequality to the numbers $1$, $1$ and $t$:
$$ 1+1+t \geq 3 \sqrt[3]{t} $$
Therefore we have
$$ 2+x = 1+1+x \geq 3 \sqrt[3]{x} $$
$$ 2+y = 1+1+y \geq 3 \sqrt[3]{y} $$
$$ 2+z = 1+1+z \geq 3 \sqrt[3]{z} $$
AMC 10 Preparation Book
Order Now
and thus
$$ (2+x)(2+y)(2+z) \geq 3 \sqrt[3]{x} \cdot 3 \sqrt[3]{y} \cdot 3 \sqrt[3]{z} = 27 $$
which is what needed to be proven.