Titu’s Lemma states that for all positive real numbers
$x_1$, $x_2$, … , $x_n$ and $y_1$, $y_2$, … , $y_n$ it holds that
\[\frac{ x_1^2 } { y_1 } + \frac{ x_2 ^2 } { y_2 } + \cdots + \frac{ x_n ^2 } { y_n } \geq \frac{ (x_1 + x_2 + \cdots+ x_n ) ^2 } { y_1 + y_2 + \cdots + y_n }.\]
The equality holds if there exists $k$, such that $y_i=k x_i$ for all $i=1,2,…,n$.
Problem (Ireland, 2000)
Let $a$, $b$, $c$, $d$ be positive real numbers such that $a+b+c+d=1$. Show that
$$ \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a} \geq \frac{1}{2} $$
Solution
Let us put
$$\left(x_1,x_2,x_3,x_4 \right)=\left( a,b,c,d \right)$$
$$\left(y_1,y_2,y_3,y_4 \right)=\left( a+b,b+c,c+d,d+a \right)$$
Check out our courses!
Learn moreLet us now apply the Titu’s Lemma:
$$ \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a} \geq $$
$$ \frac{ (a+b+c+d)^2}{2(a+b+c+d)} = \frac{1}{2} $$
which is what needed to be proved.